



# Rotorcraft Validation Case Study

**Estimate with Confidence™** 

© 2021 PRICE Systems, L.L.C. All Rights Reserved

















TrueExplorer

TrueFindings

PRICE® Models

TruePlanner

TrueMapper

TrueBOE

TrueXLS

Search & extract data from the PCA Ecosystem

Manage & Analyze Data Sets

Predictive Models Integration Framework Customer Data Mapping Basis-of-Estimate Generator Access PCA Engine from Excel



















# **Today's Presenter**



## Will Gbelee

#### **Solutions Consultant**

- William serves as a technical resource for the United States Air Force, and the United States Army clients
- Supports training, mentoring, and consulting in predictive estimation and data analysis
- Spent 4+ years supporting DoD cost estimating, Budgeting, and Air Force Life Cycle Management Center (AFLCMC)
- William holds a B.S. in Accounting & Finance from Wright State University



## **Overview**

- Background
- Project Goals
- Ground Rules and Assumptions
- Live Demo
- Results
- Summary





# **Background**

- The first iteration of Rotorcraft Templates were geared towards top-level production costs
- The work breakdown structure (WBS) of the template and test cases were aligned with MIL-STD-881C structure

 Can the Rotorcraft Templates be refreshed with more advance analysis and to improve traceability, repeatability, and defensibility?



# **Background continued**

## **Original Test Case PBS:**





# **Project Goals**

- Provide users with a Template and Test cases that can quickly provide rough order-of-magnitude (ROM) cost predictions for amortized unit production cost on existing rotorcrafts
- The template and test cases should provide input traceability and repeatability
- The test cases should be based on open-source data and work breakdown structure should align with the latest MIL-STD-881E



# **New Test Case Examples**

#### **New Test Case PBS:**





# **Ground Rules & Assumptions**

## Assumptions

- Cost can be predicted with minor tailoring using a standard template
- Nominal Production Rates (20% G&A and 12% Fee/Profit)
- 80/20 Split Between Structure and Electronics for Level 5 WBS Components
- Manufacturing Country of origin to better capture labor rates

### Parameters

- Cost, Schedule, and Technical parameters for 21 Rotorcraft systems:
  - Empty Weight
  - EMD & Production Schedule
  - Standard complexity sets
  - Standard weight allocation based on Tilt Rotor and Baseline Helicopter



# **Weight Allocation Schemes Utilized**

## Helicopter

| Baseline Helicopter (Weight Empty) | Weight % |
|------------------------------------|----------|
| Fuselage                           | 19.49%   |
| Nacelle                            | 4.27%    |
| Propulsion                         | 12.68%   |
| Flight Control                     | 8.40%    |
| Auxiliary Power                    | 1.49%    |
| Hydraulics                         | 1.09%    |
| Electrical                         | 3.50%    |
| Crew Station                       | 0.63%    |
| Environmental Control              | 1.82%    |
| Fuel                               | 2.31%    |
| Landing Gear                       | 0.63%    |
| Rotor Group                        | 12.16%   |
| Drive Assembly                     | 14.77%   |
| Communication/ Identification      | 1.72%    |
| Navigation/ Guidance               | 0.57%    |
| Mission Computer/ Processing       | 11.49%   |
| Fire Control                       | 1.15%    |
| Data Display and Controls          | 1.15%    |
| Survivability                      | 0.67%    |
|                                    |          |
| Total Weight Empty                 | 100.00%  |

## **Tilt Rotor**

| Baseline Tilt-Rotor (Weight Empty) | Weight % |
|------------------------------------|----------|
| Fuselage                           | 16.67%   |
| Nacelle                            | 2.41%    |
| Propulsion                         | 10.18%   |
| Auxiliary Power                    | 0.98%    |
| Hydraulics                         | 1.01%    |
| Electrical                         | 7.81%    |
| Crew Station                       | 5.56%    |
| Environmental Control              | 0.94%    |
| Fuel                               | 3.14%    |
| Landing Gear                       | 3.79%    |
| Rotor Group                        | 11.00%   |
| Drive Assembly                     | 15.09%   |
| Communication/ Identification      | 1.14%    |
| Navigation/ Guidance               | 0.38%    |
| Mission Computer/ Processing       | 0.00%    |
| Fire Control                       | 6.59%    |
| Data Display and Controls          | 0.76%    |
| Survivability                      | 0.56%    |
| Total Weight Empty                 | 100%     |



# **Rotorcraft Database**

• Number of Rotorcrafts used in this study











































# PRICE Cost Analytics™ Technology DEMO



# **Results: All Rotorcrafts**

|                       | ** F | Reference Cost (\$M) | ** | Template Estimate (\$M) | % Difference | % Absolute Difference |
|-----------------------|------|----------------------|----|-------------------------|--------------|-----------------------|
| AH-1Z Viper           | \$   | 29.03                | \$ | 23.53                   | -18.97%      | 18.97%                |
| AH-64 Apache          | \$   | 20.69                | \$ | 19.88                   | -3.94%       | 3.94%                 |
| AW-139                | \$   | 13.46                | \$ | 14.87                   | 10.43%       | 10.43%                |
| *BELL 407 (Civil)     | \$   | 4.63                 | \$ | 4.06                    | -12.21%      | 12.21%                |
| CH-47 Chinook         | \$   | 31.89                | \$ | 38.25                   | 19.93%       | 19.93%                |
| CH-53E Super Stalion  | \$   | 40.06                | \$ | 40.03                   | -0.07%       | 0.07%                 |
| CRH                   | \$   | 48.52                | \$ | 40.08                   | -17.40%      | 17.40%                |
| Denel Rooivalk        | \$   | 48.28                | \$ | 37.79                   | -21.73%      | 21.73%                |
| *Enstrom F-28 (Civil) | \$   | 1.90                 | \$ | 1.79                    | -5.90%       | 5.90%                 |
| *Eurocopter EC-135    | \$   | 5.81                 | \$ | 5.47                    | -5.90%       | 5.90%                 |
| KUH-1 Surion          | \$   | 18.50                | \$ | 23.59                   | 27.50%       | 27.50%                |
| MH-60R                | \$   | 34.09                | \$ | 28.58                   | -16.16%      | 16.16%                |
| NH-90                 | \$   | 38.10                | \$ | 28.53                   | -25.10%      | 25.10%                |
| OH-1 Ninja            | \$   | 26.78                | \$ | 21.15                   | -21.02%      | 21.02%                |
| OH-58 Kiowa Warrior   | \$   | 6.41                 | \$ | 6.23                    | -2.86%       | 2.86%                 |
| Sikorski S-92         | \$   | 46.03                | \$ | 46.25                   | 0.49%        | 0.49%                 |
| UH-60 Black Hawk      | \$   | 18.72                | \$ | 18.81                   | 0.48%        | 0.48%                 |
| UH-72 Lakota          | \$   | 8.28                 | \$ | 11.53                   | 39.38%       | 39.38%                |
| V-22 Osprey           | \$   | 89.81                | \$ | 56.58                   | -37.00%      | 37.00%                |
| Average               |      |                      |    |                         |              | 15.08%                |

<sup>\*</sup> Commercial Rotorcraft Systems

<sup>\*\*</sup> Normalized to CY2020 Dollars



# **Test of Mean Differences**

| t-Test: P | aired Two | Sample | for Means |
|-----------|-----------|--------|-----------|
|-----------|-----------|--------|-----------|

|                              | Reference Cost (\$M) | Template Cost (\$M) |
|------------------------------|----------------------|---------------------|
| Mean                         | 27.95                | 24.58               |
| Variance                     | 460.90               | 241.22              |
| Observations                 | 19                   | 19                  |
| Pearson Correlation          | 0.941728847          |                     |
| Hypothesized Mean Difference | 0                    |                     |
| df                           | 18                   |                     |
| t Stat                       | 1.705564482          |                     |
| P(T<=t) one-tail             | 0.052642722          |                     |
| t Critical one-tail          | 1.734063607          |                     |
| P(T<=t) two-tail             | 0.105285444          |                     |
| t Critical two-tail          | 2.10092204           |                     |

There is no statistically significant difference between the means of the two trials.



# **MAPE by Country of Origin**

#### MAPE by Country of Origin





# **MAPE** by Rotorcraft Type







# **Dependency Finder- All Rotorcrafts**

| Name                 | Rotorcraft Class | Empty Weight | First Flight | MAPE   |
|----------------------|------------------|--------------|--------------|--------|
| Enstrom F-28         | Utility          | 1,595        | 1960         | 5.90%  |
| CH-47 Chinook        | Cargo            | 23,400       | 1961         | 19.93% |
| OH-58 Kiowa Warrior  | Recon            | 3,829        | 1966         | 2.86%  |
| UH-60 Black Hawk     | Utility          | 12,500       | 1974         | 0.48%  |
| CH-53E Super Stalion | Cargo            | 33,226       | 1974         | 0.07%  |
| AH-64 Apache         | Attack           | 11,387       | 1975         | 3.94%  |
| MH-60R               | Utility          | 14,430       | 1979         | 16.16% |
| V-22 Osprey          | Tilt Rotor       | 33,140       | 1989         | 37.00% |
| Denel Rooivalk       | Attack           | 12,632       | 1990         | 21.73% |
| Eurocopter EC-135    | Utility          | 3,208        | 1994         | 5.90%  |
| BELL 407             | Utility          | 2,668        | 1995         | 12.21% |
| NH-90                | Utility          | 14,100       | 1995         | 25.10% |
| OH-1 Ninja           | Recon            | 5,401        | 1996         | 21.02% |
| Sikorski S-92        | Utility          | 15,500       | 1998         | 0.49%  |
| AH-1Z Viper          | Attack           | 12,300       | 2000         | 18.97% |
| AW-139               | Utility          | 7,984        | 2001         | 10.43% |
| UH-72 Lakota         | Utility          | 3,951        | 2006         | 39.38% |
| KUH-1 Surion         | Utility          | 10,964       | 2010         | 27.50% |
| CRH                  | Utility          | 16,000       | 2019         | 17.40% |

| Statistics           |                    |         |
|----------------------|--------------------|---------|
| Independent Variable | Dependent Variable | R Value |
| First Flight         | Classes            | 0.469   |
| Classes              | First Flight       | 0.469   |
| First Flight         | MAPE               | 0.458   |
| MAPE                 | First Flight       | 0.458   |
| Classes              | MAPE               | 0.273   |
| MAPE                 | Classes            | 0.273   |
| Empty Weight         | Classes            | 0.222   |
| Classes              | Empty Weight       | 0.222   |
| Empty Weight         | MAPE               | 0.132   |
| MAPE                 | Empty Weight       | 0.132   |
| First Flight         | Empty Weight       | 0.127   |
| Empty Weight         | First Flight       | 0.127   |



# **Curve Finder- All Rotorcrafts**



# > authentication VERIFIED > sending packet #45601E3A75 > sending packet #56AC33E7C1

# **Summary**



# **Overall Results**

 Templates produce mean absolute percent error (MAPE) of 15.08%

- Accuracy was validated by testing for significance
  - Performed paired student's t-Test of mean difference between actuals and template estimates



# **Conclusion**

- Rotorcraft Templates can accurately estimate historical programs
  - PROVIDES PROOF

- Validates Quality and Reliability of the data behind our models
  - CERs/models can accurately predict Rotorcraft Systems



# **Next Steps**

- Expand approach to other Aircraft Systems
  - Fighter Aircrafts
  - Bomber Aircrafts
  - Mobility Aircrafts
  - Unmanned Air Vehicles
- Expand approach to Development Phase

Expand approach to other Weapon Systems



# **Questions?**



# Contact PRICE®

www.pricesystems.com 1-800-43PRICE

William.Gbelee@pricesystems.com















TrueFindings

PRICE® Models

TruePlanner

TrueMapper

TrueBOE TrueXLS

Search & extract data from the PCA

Manage & Analyze Data

Predictive

Integration

Customer Data Mapping

Access PCA Engine from Excel



# **Backup Slides**